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A planar, sonic, underexpanded air jet induced strong and self-sustained flow 
oscillation. The jet was bounded by two parallel walls extending between the nozzle 
and the Helmholtz resonator opposite. This oscillation was characterized by large 
pressure amplitudes in the resonator and periodic displacement of a detached shock 
wave. The observed phenomena were in some measure similar to those occurring with 
Hadmann-Sprenger tubes. Based on the experimental results, including Mach- 
Zehnder interferograms and fluctuating pressure and velocity measurements, the 
properties of the oscillation have been described and a model for theoretical analysis 
has been established. Experimental and numerical investigations have made possible 
a description of the oscillation mechanism, which is of the relaxation type. 

1. Introduction 
Investigations of free axisymmetric or planar jets and of axisymmetric or planar 

mixing layers impinging on various obstacles have been described in numerous papers 
(cf. references in three review papers: Rockwell 1983; Rockwell & Naudascher 1979; 
Jungowski 1978). The impinging of a gas jet on a cavity-particularly on a 
Hartmann-Sprenger or resonant tube - has already been under study for a long time. 
Various potential applications of Hartmann-Sprenger tubes in certain branches of 
engineering (Smith & Powell 1964 ; Rozenberg 1969) have stimulated many experi- 
ments. Almost all the numerous papers, except two (Przirembel & Fletcher 1978; 
Przirembel, Fletcher & Wolf 1977), refer to tubes with axisymmetric jets. In a few 
cases (Smith & Powell 1964; Vrebalovich 1962; Sarohia & Back 1979), the cavity 
alone had a square or nearly square cross-section. The authors do not know of any 
results obtained with planar jets, i.e. from a rectangular nozzle and bounded by two 
parallel walls extending from the nozzle to the cavity. In one paper (Smith & Powell 
1964), the early experiments of Hartmann with a Helmholtz resonator are mentioned 
and repeated. 

The oscillation in a cavity was first described by Hartmann. He and his co-workers 
have published several papers concerning various Hartmann generators. They 
postulated the modus operandi (Hartmann & Trolle 1930) of a simple, basic 
generator. It was noted that oscillations were excited when the mouth of the cavity 
was located near the maxima of the total-pressure distribution along the axis of a 
jet with a cellular structure. Due to the instability of the stagnation interface, the 
cavity fills and debouches in turn with its natural frequency. Sprenger (1954) was 
the first investigator to report the thermal aspects of the Hartmann generator. Smith 
& Powell (1964) analysed and clarified some shortcomings of Hartmann’s theory, 

t Presently research scientist NOVA/Husky Research Corporation, Calgary, Canada. 
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largely by identifying the bi-stable condition of the stagnation interface. The position 
of the interface and stagnation pressure are coupled with the position of the detached 
shock wive along the jet. This was proven, however, for the axisymmetric jet only. 
They found that a fully two-dimensional system - enclosing the nozzle, jet flow and 
cavity between two glass plates - would not oscillate under any combination of 
circumstances in the absence of an added tripping device. Rozenberg (1969), 
discussing the results of Hartmann & Trolle (1930) and Boucher & Brun (1958), 
arrived at the conclusion that a relaxation mechanism is responsible for the 
oscillation. Sarohia & Back (1979) distinguished three modes of generator operation : 
the jet instability mode, the jet regurgitant mode and the jet screech mode. The first 
mode occurred only for a subsonic jet over a wide range of the ratio l ld  ( 1  is the spacing 
between nozzle and resonator and d the exit diameter of a nozzle) and was associated 
with the formation of large, periodic vortices at the nozzle exit. These toroidal 
vortices in the jet flow grew in size as they convected downstream and resulted in 
weak compression waves inside the resonator. The oscillation frequency was found 
to occur in a narrow range of St = f d / u ,  between 0.3 and 0.4. Sometimes this 
frequency was superimposed on the fundamental tube resonance frequency. The 
regurgitant mode is the basic one observed by Hartmann. The screech mode appeared 
when the cell length of a free jet exceeded spacing 1. An almost normal shock oscillated 
with high frequency and small amplitude in front of the resonator, increasing the 
temperature inside significantly. The authors supposed that these oscillations were 
driven by the shear layer emerging from behind this shock and impinging on the 
resonator inlet. 

Many efforts have been devoted to increasing the pressure amplitude and tem- 
perature in the resonator. Among them were: optimum selection of a nozzle to 
resonator cross-sectional area ratio (Rozenberg 1969) ; insertion of a coaxial rod in 
the nozzle (Smith & Powell 1964; Brocher, Maresca & Bournay 1970) or central plate 
extending through a plane nozzle and resonator (Jungowski & Meier 1984); 
implementation of a tapered (Iwamoto et al. 1979), single step (Kawahashi, Bobone 
& Brocher 1984) or multistep (Brocher & Ardissone 1983) resonator; and employment 
of a second resonator (Kawahashi & Suzuki 1974; Brocher & Pinna 1980). 

A few attempts were made to develop a theory describing the oscillation mech- 
anism, but none was satisfactory. Msrch (1964), assuming one-dimensional flow along 
the jet axis between a normal shock and a blunt body as a resonator, derived a linear 
wave equation and boundary conditions at the shock and at the resonator. As a 
soluiion he obtained several resonant frequencies corresponding to various ampli- 
fication factors. The theory applies, however, to shock oscillation with a small 
amplitude only. Therefore, it may be adequate for the regurgitant mode with a very 
short cavity, or possibly also for the screech mode. Thompson (1964) calculated gas 
oscillation inside a tube resonator by the characteristics method, assuming simple 
boundary conditions, different for the inflow and outflow phase. Brocher et al. (1970), 
using characteristic equations and introducing some simplifying assumptions, 
showed that the oscillation in a resonator tends to a ‘limit cycle’ when certain 
boundary conditions exist. Kawahashi et al. (1974) also applied the characteristics 
method but included wall friction, heat transfer and interaction on a contact surface. 
Using some experimental results they introduced more precise boundary conditions 
for the inflow phase. 

Kawahashi & Suzuki (1979) considered the flow between the nozzle and the 
resonator, as well as an internal flow in the resonator. These flow fields were separated 
by a hypothetical, massless membrane. The authors applied one-dimensional linear 
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theory and introduced some experimentally found jet properties. The results showed 
that the oscillations are self-excited owing to the negative acoustic resistance in 
certain ranges along the jet. In  those unstable ranges, shock vibrations in the axial 
direction arise, with small amplitude and high frequency. 

The present study concerns a planar flow with a Helmholtz resonator instead of 
the previously investigated axisymmetric flows with quarter-wave resonators. The 
authors believe that this investigation should make it possible to distinguish more 
details of the flow patterns than in the axisymmetric case and to show the oscillation 
mechanism explicitly. 

The flow oscillation studied in this paper is one of eight different oscillations 
identified in the same test facility (Jungowski & Meier 1984) but with different 
elements facing the jet. The elements were : three Helmholtz resonators, the first one 
as in the above paper, the second with two perforated and divergent plates joining 
the nozzle to the resonator, and the third with a plate dividing the nozzle and 
resonator along the centreplane; a resonator chamber without any neck but with a 
sharp edge inlet; a quarter-wave resonator; a wedge; and an empty test section with 
the throttle valve (3), shown in figure 1, facing the jet. Four of these oscillations were 
previously briefly reported by Jungowski (1982). According to the particular element 
geometry and the pressure ratio across the nozzle, different flow phenomena were 
primarily responsible for the occurrence of a self-sustained flow oscillation. These 
phenomena were instabilities of the detached shock wave, a cellular structure, the 
shear layer, dead air and a stagnation region, as well as separation at  the boundary 
layer or variation of the flow-rate coefficient. 

2. Facility and measurements 
2.1. Facility 

A cross-section of the experimental apparatus is shown in figure 1 (a ) ,  with nozzle- 
neck details shown in figure 1 (b). Ambient air was sucked through a rectangular, 
converging nozzle (1) into a plenum chamber (Hp = 0.5 m, L, = 0.46 m, h = 0.01 m) 
in which a Helmholtz resonator (2) was installed (1  = 0.03 m, H ,  = 0.3 m, 
L, = 0.187 m, H = 0.016 m, L = 0.15 m). The widths of the nozzle, plenum chamber 
and resonator were equal (b = 0.1 m), thus achieving a quasi-two-dimensional flow. 
The ratio p of chamber pressure at the nozzle p ,  to ambient pressure p ,  was altered 
by means of a throttle valve (3). A test run could be made by opening a gate valve 
quickly to connect the plenum chamber to the vacuum reservoir. To diminish the 
effects of pressure-wave reflections in the plenum chamber, perforated (23 yo) walls 
(4) with mineral wool (5 )  behind them were added. Optical windows (6) enabled flow 
visualization in the chamber. One window could be replaced by a disk on which a 
pressure transducer BW and a hot-wire probe SI were mounted. Pressure transducers 
were also located at six positions on the perforated walls (X, A, B, C, D, E) and in 
the neck (DI), in the plane of symmetry of the chamber. 

2.2. Measurements 
The flow was visualized by means of a Mach-Zehnder interferometer, manufactured 
by Carl Zeiss Ltd. The light Bource was a spark of 1 ps duration,which was in an argon 
chamber. Photographs of the interferograms were taken with a conventional camera 
and with a high-speed (up to 8000 frames/s) ' Fastax' camera as films. 

Time-mean underpressure in the plenum chamber was measured during a test run 
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FIGURE 1 .  (a) Cross-section of experimental apparatus; (a) nozzle-neck details. 1 ,  nozzle; 2, 
resonator; 3, throttle valve; 4, perforated walls; 5, mineral wool; 6, optical window; X,  A, B,  C, 
D, E, BI, CI, DI and BW, pressure transducers; SI, hot-wire probe. 

by a digital manometer, fed through a small orifice close to the nozzle lip. This 
underpressure and atmospheric pressure were processed by an online computer and 
thus p was estimated for each test run. 

Miniature, fast-response, piezo-resistive-type transducers (Kulite model 
XCS-093-15 A or XCS-093-5 D) were used to measure the unsteady surface pressures. 
These transducers have a linear dynamic range of 100 and 30 kPa respectively and 
a flat frequency response to 90 kHz. An amplifier with 16 channels was available. 

Fluctuating velocity was measured by a tungsten hot-wire (5  pm) constant- 
temperature anemometer ASM 1 (Stasicki & Meier 1976). 

Data from the pressure transducers and from the hot-wire probe were digitized and 
processed by a PDP 11/34 computer. The analog signals were sampled at various 
rates according to  the system being used. With Converter LPA 11 K, the sampling 
rate s.r. = 50/n (kHz) depends on the number of probes n. With Transient Recorder 
Le Croy and Camac-Crate a sampling rate of 200 kHz was adopted. A fast- 
Fourier-transform (FFT) algorithm was used for calculating the spectra. The 
frequency constant band in the spectrum corresponding to the higher sampling was 
12.207 Hz. 

The tests were carried out for 0.4 > p > 0.15, with corresponding Mach numbers 
at the jet boundary of 1.22 < M < 1.9. 



Self-sustained oscillation of a jet impinging upon a Helmholtz resonator 81 

160 

I20 
A ,  

(mb) 80.  

40- 

0.12 

f 
(kHz) 0.08 

0.04 

- 0.15 - 0 

0 0  

- 0 
A 

Pa 
9( * . ..' - 0.10 2 

4sy:: .-$ , : '. . 0 @B . . * .  . s 
- 0.05 .. 8'. . ' .  

.'. . . .  
- .  1 

,d..cI . ::* . 6 . 

- 1.5 - : 
CI 

f 
fH 

;..5:*.. 
- 1.0 - .. . 

* --*b.w.p,,oOm . . . . . ... p ' ,, 
0 - - 0.5 

.. r -  I I I 

0.16 0.22 0.28 0.34 

3. Experimental results 
Figure 2 shows frequency f and pressure amplitude A, inside the resonator chamber 

(test point CI) versus p. Large amplitudes occur over a pressure range where regular 
oscillation is observed (see also figure 7).  The lower boundary at  p = 0.19 is very 
distinct and stable, unlike the boundary at  a higher p = 0.28 which is much less 
distinct and somewhat volatile. The dots result from measurements with continuously 
increasing p controlled by a wider opening of the throttle valve (3) during the test. 
Data obtained individually with a preset valve position are marked by circles. An 
increased scatter of the amplitude a t  the upper boundary of the oscillation could be 
caused by a too rapidly varying pressure in the test section, thus preventing 
development of the regular oscillation in that jj-region in which it appeared sometimes 
as unstable. The frequency increases with decrease in p .  This results from a jet cell 
elongation and thus displacement towards the resonator of the minimum-density area 
in the cell. We shall discuss this point again with the oscillation mechanism. The 
maximum pressure amplitude appeared near p x 0.28. The ratio of the measured 
frequency to the calculated acoustic natural frequency of the Helmholtz resonator 
fH = 75 Hz varied between 0.65 and 1.08 in the range of the regular oscillation. The 
natural frequency of the system consisting of the test section and the resonator inside 
was very close to that of the resonator only. 

Typical pressure-time traces (figure 3) and pressure spectra monitored by the 
transducers BI, CI, E, D, C, B, A, X with the same ji indicate that the oscillation 

FIGURE 2. Frequencyf, (f/fH) and amplitude A,, (A,/p,) inside the resonator chamber (CI) versus 
p :  ., throttle valve opening during the test run; 0,  preset valve position. 
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FIGURE 3. Pressuretime traces @ = 0.279). 

is regular and occurs in the whole test section. Pressure amplitudes in the test section, 
however, are only 1 6 2 9 %  of the amplitude in the resonator. The discrete dominant 
frequency was equal at all test points and the phase angle measured indicated that 
pressure signals a t  the nozzle (B and C) lead the signal in the resonator (CI) by 82" 
and llOo respectively, but the signals a t  the horizontal walls of the test section (E, 
D, A and X) lag by 162'-168". 

Figure 4 presents a film sequence (1830 frames/s) corresponding t o  the trace 
produced by spark discharges (figure 5a)  and to the chamber pressure trace (figure 
5 b ) .  Fifteen frames from numbers 1-29 comprise one period. Figure 5 ( d ,  e) show 
pressure-time traces at the neck lip and a t  the nozzle respectively. Figure 5(c )  
contains the time trace of the air velocity u, in the neck (SI). The letters (a ) ,  ( b ) ,  ( c )  
and ( d )  in figure 5(a)  relate to the interferograms in figure 6 taken a t  various times. 
These single interferograms, being of a better quality than movie frames, enabled us 
to study more details of a flow pattern and allowed us to  evaluate density and pressure 
distributions along the centreplane of the jet (figure 7) .  Entropy increase, owing to 
water-vapour condensation indicated in figure 6 by a large gap between fringes 
somewhat downstream of the nozzle exit, was calculated under the assumption that 
shock waves in the interferograms ( b )  and ( d )  are quasi-stationary. The resulting 
relative humidity of the air was, in both cases, about 58 yo. The same entropy increase 
was used to calculate pressure distributions from interferograms (a)  and ( c ) .  The 
decrease in stagnation pressure Ap,, (figure 7 b )  caused by the condensation was 
nearly equal to Ap,, which is associated with the shock wave ( d ) .  Corresponding 
instantaneous static pressures measured a t  the nozzle, at the neck, and in the chamber 
are shown for comparison in figure 7 ( b ) .  The arrows indicate flow direction a t  the neck 
lip (a,  b and d )  at  the stagnation interface ( d ) .  Interferograms in figure 6(a, b)  and 
corresponding curves in figure 7 are associated with the filling phase (figure 5), and 
therefore the arrows are orientated to the right (u, > 0). The interferogram in figure 
6 (c) and curve ( c )  in figure 7 relate to  the interphase when u, = 0. Interferogram figure 
6(d) and curve ( d )  in figure 7 belong to the discharge phase when u, < 0. At the 
beginning of the filling phase, ( a ) ,  pressure in the chamber is much lower than the 
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FIGURE 4. One cycle of flow oscillation (interferograms from a film running at 1830 frames/s, 
j j  = 0.273). 
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FIGURE 5. Signals monitored simultaneously with the film; j j  = 0.273. (a) Light-source signal; ( b )  
pressure signal inside the resonator chamber (CI); (e )  flow velocity in the neck (SI); (d )  pressure 
signal at the neck lip (BW); (e) pressure signal at the nozzle (B). 

jet stagnation pressure p,. Later i t  is equal to p,, ( b ) ,  and, during the interphase, (c), 
exceeds p,. The static pressures directly measured fit well with those calculated from 
the density distribution for (a ) ,  ( b )  and (c). Only during the discharge phase ( d ) ,  are 
the pressures measured a t  the neck lip and in the chamber lower than the respective 
static and stagnation pressures of the jet evaluated from the density distribution. 
The location of the shock wave, varying within one period and determined from the 
movie frames, is given with the associated pressure trace in figure 8 (notation 
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FIGURE 6. Interferograms of the oscillating jet @ = 0.285). 
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@ = 0.273, 1-29 denote frame numbers in figure 4, and (a) ,  ( b ) ,  (c), (d )  are from figure 6). 

explained in figure 10). At the beginning of the filling phase and before the discharge 
phase, no shock can be distinguished in the jet structure (frames 3, 15 and 17 in figure 
4, and figure 6c).  The cells look considerably distorted, perhaps owing to some 
transverse deformation of the shock front resulting from a rapid propagation along 
the cell and an interaction with the boundary layer a t  the sidewalls. The stationary 
shock at the neck lip re-emerges initially only a t  some part of the cross-section (frames 
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5 ,  7 and 9 in figure 4), extending later across the whole neck (frames 11 and 13 in 
figure 4). 

A study of all the evidence collected in figures 4-8 yielded the following information. 
In the first frame (figure 4) the jets perpendicular to the centreplane of the nozzle 
are thin, and the shock wave is heading towards the neck where it disappears for 
a while (frame 3, figures 6 ( a )  and 8). Minimum chamber pressure (figure 5 b ) ,  and 
velocity in the neck equal to zero (figure 5 c ) ,  indicate the beginning of the filling 
phase. Displacement of the shock, toward the cell portion in which the Mach number 
is lower, increases the stagnation pressure and thus generates a sharp pressure peak 
at the neck lip (figure 5d) .  This peak in turn develops a pressure wave which appears 
as a density variation in the neck (frame 1) .  That density variation is present during 
the whole filling phase (frames 1-15 and figure 6 a ,  b) and during the beginning of the 
discharge phase (frames 17, 19 and figure 6c) .  As the pressure peak is higher than 
the pressure in the chamber, the air in the neck is accelerated and the velocity 
increases violently (figure 5 c ) .  An expansion wave reflected from the resonator 
chamber decreases pressure at  the neck lip considerably (figure 5d) .  This process of 
wave propagation and reflection continues during the filling phase of the chamber 
(figure 5 c ,  d ) .  Low pressure at the neck lip enables the jet to fill the neck almost 
without spilling over (frames 5-9 and figure 6b) .  The tranquility of the region 
surrounding the jet (frame 7 and figure 6b)  corresponds to maximum pressure at the 
nozzle (figure 5e). The shock wave reappears at the neck lip (figure 8), first partially 
(frames 5-9) and then over the whole cross-section (frames 11 and 13). Velocity in 
the neck decreases abruptly (figure 5 c ) ,  indicating the end of the filling phase. When 
the pressure in the chamber exceeds the stagnation pressure of the jet, the shock wave 
moves upstream (figure 8) and the cellular structure becomes irregular (frames 15, 
17 and figure 6 c ) .  This is followed by some fluctation in velocity and by a pressure 
increase in the neck (figure 5d) .  The pressure then decreases, owing primarily to an 
increase in velocity (frames 17, 19 and figure 5 c )  and to a decrease in the chamber 
pressure (frames 19-29, figures 6d ,  5b) .  On frame 19 the shock reappears a little 
upstream of minimum density. Velocity in the neck decreases gradually (frames 
21-29 and figure 5 c ) .  During the discharge phase, the shock moves slowly downstream 
(figure 8) towards minimum density and thus the cycle may start again. 

When compared to the mathematical model described in $4, it should be 
emphasized that density gradients in the neck appeared along only about one third 
of its length (figures 4 and 6 ) .  The most significant density variation occurred close 
to the neck lip. Corresponding pressure-time traces obtained with the transducers 
BW and DI (figures 1, 5d and 3) differ considerably. Most probably, density and 
pressure variations close to the neck lip depend substantially upon a locally 
fluctuating flow pattern, resulting from pressure-wave reflections a t  the neck lip. 
During the filling phase, in particular, strong pressure and velocity oscillation 
( w  1.1 kHz) was excited in the neck (figure 5 c ,  d ) .  

It is possible that the shock wave at the lip (figure 8) was also involved in that 
oscillation. The film speed (1830 frames/s) was, however, too low to expose a shock 
displacement with high frequency and small amplitude. All the phenomena men- 
tioned above were omitted in the theoretical considerations. 

Normalized cell length (LJh,  LJl) and position of minimum density (L,/h, Lm/l)  
with corresponding maximum Mach number are shown versusp in figure 9. They were 
evaluated from the interferograms obtained with the empty plenum chamber, i.e. 
without the resonator. We can observe that the oscillation with a large pressure 
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FIGURE 9. Normalized cell length L, and position of minimum density L, with a corresponding 
Mach number M .  

amplitude (a-b range of ji in figure 9, see also figure 2) occurs when the spacing 
between the nozzle and the neck (Zlh = 3) is close to the cell length of a free jet 
(LJh = 3.75-2.5, L J l =  1.25-0.83). Within the range (b-c) the pressure amplitude 
was small and outside the range (a+) the oscillation did not occur at all. 

The range of oscillation (a-b) given above is slightly different from that determined 
by Hartmann & Trolle (1930). Experimenting with axisymmetric jets they kept the 
pressure ratio p constant but varied the spacing 1. The ranges established were: 
L J l =  1.1-0.72 with p = 0.286 and L,/l= 1.077-0.73 with ji = 0.253. A different 
neck to  nozzle area ratio (Hartmann & Trolle 1.015 against our 1.6) could also 
contribute to a discrepancy between the compared results. 

4. Theory 
The aim of a mathematical flow model, presented here, is to study the basic, 

low-frequency oscillation by means of a numerical computation. The simplifying 
assumptions made the equations simple and easy to solve, but the influence of the 
most important parameters was still retained. 

As basic time-dependent differential equations we use the unsteady Bernoulli 
equation for the flow in the neck of the resonator and the equation of conservation 
of mass in the resonator chamber. The flow field between the shock wave and the 
resonator neck is considered as quasi-steady, i.e. the time-dependent flow variables 
fulfil the steady conservation equations in this area. This simplification is acceptable 
because the flow region between the shock wave and the resonator is small when 
compared to the length L of the neck, which means that the space integral over the 
acceleration can be neglected in this region. 

We distinguish between the three different types of flow fields which are shown in 
figure 10. First, we consider the attached flow field during the filling phase (figure 
10a). The variables p ,  p ,  u and t denote pressure, density, velocity and time, 
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FIGURE 10. Symbols and schematic diagrams of three possible flow fields in front of the resonator. 
(a) Attached flow field during filling phase; ( b )  discharge phase; (c) the whole jet flows into the 
resonator. 

respectively. The subscripts r and z correspond to the resonator chamber and to the 
resonator neck; y is the ratio of specific heats. The velocity in the neck is u, > 0 and 
the Bernoulli equation of the form 

can be applied when viscosity and heat conduction are neglected and the flow 
variables in the neck are assumed to be functions of time only. As we will show later, 
(7),  the entropy in the neck is different from that in the resonator chamber during 
the filling phase. Therefore, at  the same pressure, the density at the exit of the neck 
and in the inner chamber must be different. Thus, the density in the neck pz, being 
dependent on time only, also prevails at the exit of the neck (figure 10a). The 
experiments exposed a complicated flow pattern in the neck, discussed in the previous 
section. It seems, however, that the variation of flow along the neck associated with 
high-frequency oscillations has an insignificant influence on the basic oscillation. 

The following unsteady frequency describes the conservation of mass in the 
resonator chamber: 

where V, is the volume of the chamber and F, the cross-sectional area of the neck. 
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Quasi-steady conservation equations of mass and momentum in the a. direction, 
according to  the control surface in figure lO(a), are 

p s u s h , - p c u c h c - ~ z u z H  = 0, (3) 

(Psu;+P,-Pc)h ,  ~ ~ ~ " o - P c ~ ~ ~ c - ~ ~ ~ z ~ ~ + P z - ~ , ~ ~ ~ ~ ~ ~ o  

+(qL pc  ) (2-x,)  sina, = 0. (4) 

The subscripts s and c correspond to the variables behind the shock wave and the 
variables of the lateral jet in the plenum chamber. I n  our one-dimensional 
approximation, flow variables depend on the cross-section of the jet and are functions 
of time only. The pressure integral along the axis is approximated by the trapezoidal 
rule. 

I n  our considerations, the pressure distribution between the nozzle and the shock 
wave resembles the distribution along the axis of a planar and steady jet. We make 
use of the minimum pressure p,,  its position L,, and the position Lc of a maximum 
pressure obtained by experiment with a steady jet when there was no resonator in 
the plenum chamber (figure 9). I n  terms of these values, the pressure in front of the 
shock wave is given by a parabolic approximation : 

and is plotted in figure 11 (p* is the critical pressure). The cross-section of the jet and 
the remaining flow variables are obtained by one-dimensional theory. Therefore, the 
flow variables behind the shock are given as functions of the distance x, between the 
nozzle and the quasi-stationary shock. A different position of the shock wave results 
in a different shock strength, and this means a different stagnation pressure and 
stagnation density behind the shock. Stagnation parameters (pa, pa) upstream and 
the flow variables (p , ,  p,) behind the shock wave are combined in (6), 

where the function $, ( t )  is an additional variable given by the shock conditions and 
showing the entropy increase. For the resonator chamber the relationship may be 
written similarly as 

Pr - Pa 
- - -& 
Pr P i  (7) 

The gas filling the resonator chamber suffers varying irreversible processes. Entropy 
increases owing to  the shock wave and friction along the neck, and owing to  the 
dissipation of kinetic energy inside the chamber. An accurate computation of that 
entropy increase during the filling phase seems to  be impossible for several reasons. 
Therefore, the processes of compression and expansion in the chamber are assumed 
to be isentropic but occurring at an increased entropy level represented by the 
parameter that means we suppose that this parameter depends on the weighted 
mean entropy increase. Instead of the density we introduce $ into our equations. 
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FIQURE 11 .  Pressure in front of the shock wave (model of the undisturbed free jet with 
dimensionless plenum pressure j j  = 0.27). 

With the dimensionless time 7 = t c* /h  (c* is the critical velocity of sound) the 
differental equations (1) and (2) then become 

The constant K is given in terms of the geometrical quantities as K = F, h/ V,. 
from the shock relations with the help of ( 5 ) ,  the position 

x, of the shock wave must be known. We get x, from the conservation equations of 
mass and momentum, (3), (4). 

Thus, for the given initial values, the system of ordinary differential equations (8) 
and (9) which is valid for u, > 0, can be solved numerically for the pressure p ,  in the 
resonator and the velocity u, in the neck. Input parameters are the geometrical 
quantities, the quantity q5, and the pressure p ,  in the plenum chamber, which also 
determines the pressure distribution along the undisturbed free jet (figure 9, equation 
(5) and figure 11). 

A special case occurs (figure 1Oc) when the whole jet flows into the resonator. Then 
the shock wave remains at the lip of the neck so that the pressure p, during this phase 
is constant in time and, as will be shown later (figure 12), p, > p,. The flow in the 
neck is subsonic and thus p, should be equal to p ,  at the outlet of the neck. In a real 
compressible flow these boundary conditions imposed at the two ends of the neck are 
responsible for the generation of the high-frequency oscillation. This complicated 
unsteady process cannot be described by the simple equation (1). On the other hand, 
this unsteady flow can be approximated by a steady, time-average flow occurring 
until p, = p,. Therefore, when the shock is situated at  the lip of the neck we shall 
assume the flow in the neck to be steady and resulting from an isentropic compression 
of the gas behind the shock. 

During the discharge phase (u, < 0), the gas in the neck of the resonator has the 

In order to obtain 

4 P L M  179 
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same entropy level as the gas in the resonator chamber (see figure l o b ) .  Thus the 
Bernoulli equation applied to the resonator chamber and the neck exit yields 

or 

where p,, po are stagnation pressure and density at the stagnation point shown in 
figure lo@). The stagnation values behind the shock depend on the stagnation values 
in front of the shock as 

(12) 

The density in the resonator pr can be eliminated using (7),  and po by the upstream 
condition 

fi - P a  
pg - x $ r *  

Po = $;l/(Y-l)* (13) 
P a  

With the dimensionless time 7 = tc*/h, the differential equation (11) becomes 

The equation of mass conservation in the resonator, (2), for the discharge phase 

(15) 

(u, < 0) transforms to 
117 

because of 

With (12) and (13) and 

one derives 

In  the detached flow field the lateral jets consist of two parts which are of different 
entropy levels (see figure l o b ) :  

(19) 
c*p* 

h* = ihU,p,' 

h,, = -p-. UZ Pz 
UII PI1 

(Y - l ) / Y  
The velocities are 

Y-1 
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and the densities are 

Now, in the case of a detached flow with a stagnation point on the axis, we use the 
quasi-steady equations of conservation of momentum in the axial direction and in 
the direction perpendicular to the axis. The angle a is an additional variable: 

The pressure integral along the axis is approximated by the Simpson formula and 
the stagnation point is assumed to be in the middle between the shock wave and the 
lip of the resonator neck. 

With the help of (25)  and (26)  the differential equations which are valid for u, < 0 
can be solved numerically too. 

Our simple theory gives, at u, = 0, an unsteadiness in the pressure in the neck of 
the resonator, because of the sudden change of the entropy level in the neck. And 
thus a jump from the attached to detached flow field occurs, and vice versa. 

5. Numerical results 
The simple theoretical model, given in 54, describes the very complicated flow field 

with only a few variables. In particular, the flow situations in the resonator chamber 
as well as those in the resonator neck are represented by only one set of time- 
dependent flow variables. The time-dependent position of the shock wave x, (for nota- 
tion see figure 1Oa) is approximately determined from the quasi-steady conservation 
equations in the integral form. Such a model is obviously not able to show details 
of the flow field. The question is whether our theoretical model shows self-sustained 
oscillations similar to those obtained in the experiments, and thus whether an insight 
into the oscillation mechanism is given. 

Input parameters are, beside the geometrical quantities, the dimensionless pressure 
in the plenum chamber p = pC/pa  (figures 1,lOa) and the parameter 9, (see equation 
(7)). The pressure in the plenum chamber also determines the pressure distribution 
along the undisturbed free jet (equation (5 ) ,  figure 11). In  this model of the free jet 
in front of the shock wave we make use of the minimum pressure, its position and 
the position of the maximum pressure obtained from an experiment with a steady 
jet when there was no resonator in the plenum chamber (figure 9). The input 
parameter $, (equation (7)), which depends on the mean entropy increase in the 
resonator chamber, is unknown. We shall show that the 9, value introduced into the 
computation is realistic and physically justified. 

The ordinary-differential-equation system was solved using the Runge-Kutta 
method. The geometrical input parameters corresponding to the experiments were : 
K = F, h / F  = 1.61506, L lh  = 15, E/h = 3 and H / h  = 1.6. 

The numerical results given in figure 12 are for a pressure in the plenum chamber 
of p, /pa  = p = 0.24 and the parameter $, = 1.12. The initial condition for the 
pressure in the resonator (p, = p, )  means that the gas is flowing through the neck 
of the resonator at the maximum possible velocity; i.e. we start with a flow field 

4-2 
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FIGURE 12. Variation in time of (a) pressure p ,  in the resonator chamber, (a) pressure p ,  in the 
neck, (c) velocity u, in the neck, (d) position zs of the shock wave and (e) $s (equation 6) for 
4, = 1.12 and j j  = 0.24. 

corresponding t o  the shock wave position at the lip of the resonator neck (figure 1Oc). 
When the pressure p ,  in the resonator reaches the level of the pressure p ,  in the neck, 
the shock wave will move upstream and the flow field will be formed as shown in figure 
lO(a). With increasing pressure pr in the resonator, the velocity in the neck decreases 
and eventually the flow turns around. After the subsequent discharge phase, the flow 
field is as shown in figure 10 ( b ) ,  and the pressure p ,  becomes low enough to  accelerate 
the gas to the maximum velocity again. Thus a regular self-sustained oscillation, 
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FIQURE 13. Non-dimensional amplitude Ar/pa and frequency f/fH (fH is the Helmholtz 
frequency) of the oscillation versus #r @ = 0.24). 

similar to that obtained in the experiments, occurred. The computed frequency 
f x 65 Hz is the same as the corresponding experimental value (see figure 2) because 
of the special choice of the parameter g5r. The predicted non-dimensional amplitude 
of the pressure p ,  is 0.17 against the experimental one of 0.1. The computed 
non-dimensional amplitude of the pressure p ,  is 0.14 and it fits well to the 
experimental amplitudes 0.15,0.14 and 0.15 obtained with the three different levels 
of p of 0.273 (figure 5d) ,  0.279 (figure 3) and 0.285 (figure 7)  respectively. A 
qualitative agreement between the theoretical and experimental velocity-time 
traces (figure 5 c )  can be observed, if the high-frequency oscillation in the neck during 
the filling phase is also neglected and the velocity during the discharge phase is plotted 
as a negative one. A comparison of curve (d)  in figure 12 with the corresponding curve 
in figure 8 shows a small discrepancy between the extreme positions of the shock 
wave calculated from the theory (1 2 x J 1 2  0.30) and measured in the experiment 
(1 2 x J 1 2  0.38). It should be stressed, however, that the experimental shock 
position was obtained with a different p (0.285) than the numerical one (0.24). The 
time-trace of (figure 12, curve e)  shows a strong dependence on the position of the 
shock wave. 

The influence of the parameter $r on the non-dimensional amplitude and frequency 
is shown in figure 13 @ = 0.24). The lower limit dsf = 1.033 means that 9, resulted 
from a mean increase in entropy only at the shock wave during the filling phase. 
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FIGURE 14. Non-dimensional amplitude A J p ,  and frequency f/& (fH is the Helmholtz frequency) 
of the oscillation versus (q5, = 1.12). Dashed lines, experimental data from figure 2; 1 ,  valve 
opened continuously; 2, preset valve position. 

Over a wide range of $r (from 1.033 to 1.3) the amplitude differs by 13.5 yo and 
the frequency by 17 % compared to the quantities resulting from &. A very crude 
estimation of $k, related to the entropy increase caused by the inlet and friction losses 
of the neck and by a dissipation of kinetic energy in the resonator chamber, follows. 
The heat generated by these processes can be expressed in the following form : 

Aq=(I;+hH+l)$ ,  L 

where I; and h denote inlet and friction coefficients respectively. The corresponding 
entropy increase will be 

(28) A S = - - ,  Aq 
T,V 

with T,, being the average of the varying temperatures in the neck and resonator 
chamber. $k can be then obtained from 

AS 
$k = exp- 

cv 
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FIGURE 15. (u,,p,)-plane for q5r = 1.12 and p = 0.24. 

or, after transformation of (29), from 

Asuming ,$ = 0.2, h = 0.025, T,, = T, (T, denotes the jet stagnation temperature) 
and taking (from figure 12) u,/c* = 0.425 we calculate $& = 1.062 and then 
A = 4 s f A c ' x  1.1 

This value of $, results in a frequency about 1 % lower (figure 13) than the value 
of #r = 1.12 which was used in the example with p = 0.24 (figure 12) and yielded the 
same frequency as the experiment. It must be admitted that in the above assessment 
T,, was selected only on the basis of the following general discussion. 

In the Hartmann-Sprenger generator with a quarter-wave resonator the time-mean 
temperature of the indigenous gas results from a thermal balance between the heat 
generated by the shock wave and friction in the resonator on one side, and heat 
transferred through the wall and contact surface on the other. When the thermal 
capacity of the resonator is small this temperature will be established very rapidly. 

In  the facility under consideration, the resonator chamber had metal walls 
of 25 mm thickness resulting in a considerable thermal capacity. Moreover, the 
resonator chamber was surrounded by the flow in the plenum chamber. The 
temperature in the neck resulting from the flow velocity was x O.95Ta. Isentropic 
compression and a pressure ratio in the chamber of pr min/pr max x 0.8 would result 
in the temperature ratio of qmin/T,max x 0.94. In these circumstances, it is 
very doubtful that during a test run (typically 30 s) T,, could exceed T,. 

The parameter 9, = 1.12 seems to be a good approximation for the whole range 
of pressures in the plenum chamber considered, because there are only slight 
differences in the values of &, and the additional entropy increase which depends 
on the velocity in the neck of the resonator during the filling phase is also nearly the 
same for this pressure range. 
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In  figure 14, results with varying pressure in the plenum chamber and with 
4, = 1.12 are given. Outside the pressure region 0.225 < p < 0.29 the self-sustained 
oscillation did not occur. To enable a direct comparison with the experiment, the 
data from figure 2 were replotted as dashed lines in figure 14. The best coincidence 
of frequency, amplitude and boundary of the oscillation is apparent for high values of 
j i .  There is a considerable discrepancy in the frequency trend and in the lowest value 
of ji where oscillation takes place. 

The influence of different initial conditions can be seen in the (u,,p,)-plane (figure 
15). The limit cycle, which corresponds to  the self-sustained oscillation, is reached 
by outer and inner phase curves. The dashed line is the origin of phase curves leading 
in different directions. Our experimental results provide no information about the 
inner phase curves. 

6. Mechanism of the oscillation 
The experimental correlation of all the phenomena and the theoretical study led 

to the following description of the oscillation. 
During almost the whole filling phase, the shock wave remains attached to the neck 

lip and thus is close to the end of the first jet cell. As figure 9 indicates, regular 
oscillation occurred when the ratio of the cell length L, to  the spacing 1 between the 
nozzle and neck lip was between 0.82 and 1.25. The Mach number at the centreline 
around the cell end is relatively low and therefore stagnation pressure downstream 
of the shock high. When pressure p, in the resonator chamber exceeds pressure p, 
in the neck, resulting from the shock position a t  the neck lip, the flow velocity u, 
in the neck is tending to  zero and the shock will be detached and displaced upstream, 
as in front of a blunt body or the inlet of a choked diffuser. With L, < 1, the shock 
propagation along the second cell may further increase p, due to  the growing of pa, 
until it is swept into the first cell. There, i t  cannot stop, because stagnation pressure 
becomes less than p, and is decreasing with the shock propagation upstream owing 
to the increasing Mach number along the jet centreline. Then the discharge phase 
starts. With L, > 1 the attached shock stays in the first cell and, when it becomes 
detached, will be swept violently upstream. The shock stops after passing over the 
point of minimum density (L ,  in figure 9) which has the highest Mach number and 
thus lowest stagnation pressure downstream of the shock. During the discharge 
phase, the shock position is controlled by stagnation pressure at the interface between 
two jets. The drop in p, during the discharge phase reduces the interface stagnation 
pressure, resulting in a shift of the interface and shock wave downstream. Because 
of the continuing discharge, the shock is swept over the point of minimum density 
and therefore stagnation pressure rises above p,. Thus the discharge phase is 
terminated. Rapid motion of the shock continues until i t  is stopped at  the neck lip 
and the filling phase started again. 

The main events controlling the oscillation can be described by the block diagram 
in figure 16(b). Filling of the resonator chamber (u, > 0) occurs with stagnation 
pressure p, close or equal to  p ,  max, and raises the pressure p, inside up to the level 
ofp, max. Increase inp, suppresses the flow in the neck, finally causing the shock wave 
to jump upstream along AX and initiating the discharge phase (u, < 0). During that 
phase the shock is moving slowly towards the point of minimum density in the jet 
cell and thus p, and p, are tending to p ,  min, but u, to zero. In  consequence the shock 
jumps to  the neck lip and the filling phase can start again. 

The oscillation process can also be shown as a transformation of the ambient supply 
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FICWRE 16. Block diagrams describing the oscillation. 

pressure pa to the jet stagnation pressure according to the shock-wave position, which 
in turn depends upon the air flow in the neck and the chamber pressure (figure 16c). 

Applying a combination of basic schemes (Magnus 1961) of self-sustained 
oscillations, we may illustrate the phenomenon in a still more general form (figure 
16d). A trigger controls energy flow from the source to the reservoir through the 
oscillator, and energy discharge outwards. The postion of the trigger in turn depends 
upon the energy level in the reservoir and the energy flux in the oscillator. Such an 
oscillation possesses some properties of a relaxation-type oscillation. 

The range of ji over which the regular and strong oscillation occurred depends to 
some extent on the ratio of spacing 1 to the cell length L,. With decrease in ji the 
cell becomes longer and finally the detached shock related to u, = 0 will be located 
upstream of the minimum density of the cell where it is stable. This determines the 
low-jj boundary of the oscillation and corresponds to a particular spacing 1. When 
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ji, however, is low enough and strong shocks are permanent components of the cell 
structure, the detached shock has a much weaker influence on the stagnation pressure 
of the jet and the oscillation does not appear with any spacing 1. The explanation 
of a much less distinct high-ji boundary is not so simple and explicit. Most probably 
also variation of p, with the shock displacement is not sufficient to support the strong 
oscillation. It becomes irregular and the amplitude is reduced considerably. By a 
proper adjustment to ji of the spacing I and the neck to nozzle-width ratio, the 
boundaries of 2, associated with the oscillation can be somewhat extended. 

Hartmann & Trolle’s (1930) modus operandi of the air-jet pulsator is based on the 
mutual interaction of the stagnation pressure distributions along the jets from the 
nozzle and pulsator. He postulated that both distributions are of the same type. The 
cavity is filled until p, = p ,  max is reached and then an unspecified disturbance starts 
the discharge phase which terminates with p, = p, min. The observations concerning 
p, variation were absolutely correct and the discovery of instability zones, which are 
responsible for the oscillation, very important. Our photographs, however, indicate 
quite different structures of the jets emerging from the nozzle and from the neck. 
Hartmann’s postulation is not necessary to explain the mechanism of the oscillation. 
Smith & Powell (1964) illuminated the role of the shock-wave displacement in the 
driving mechanism, which was omitted in Hartmann’s considerations. They have also 
studied the oscillation with a Helmholtz resonator, but in their model identical shock 
waves appeared at  both sides of the stagnation interface. Moreover this occurred in 
the second cell of the jet. What caused the starting of the shock displacement up- 
or downstream, still remained ambiguous. The authors of this paper believe that the 
dependence of the shock detachment on the flow in the neck indicated here yields 
a missing link in the chain of events, and the block diagram in figure 16 shows the 
mechanism of the oscillation somewhat better. It should be stressed that both of the 
above-mentioned investigations were related to the axisymmetric nozzle and cavity. 

7. Concluding remarks 
The experiments and theoretical considerations described in this paper were 

intended primarily to illuminate the mechanism of the basic self-sustained flow 
oscillation in the Hartmann generator with a Helmholtz resonator. 

The study performed indicates that the oscillation mechanism is a relaxation type. 
It shows the generator investigated to be a bistable fluid flip-flop device. The 
instability of the shock wave along a jet cell is directly responsible for the oscillation. 
The oscillation occurs when a variation of the jet stagnation pressure with the 
shock-wave displacement and the entropy increase of the gas filling the resonator 
chamber are large enough. The variation in the stagnation pressure depends on the 
cell structure, resulting from a value of ji, and on the relative shock-wave positions 
controlled by the spacing 1 between the nozzle and the neck. 

Regular oscillation was observed over ji = 0.194.28 and cell length/spacing ratio 
Lc/ l  = 1.25-0.83. 

The pressure amplitude normalized by supply pressure was usually close to 0.1, 
but with p = 0.28 and Lc/l = 0.8 reached a maximum level of 0.15. The oscillation 
frequency normalized with the natural frequency of a Helmholtz resonator varied 
between 0.75 and 1.06. No shock appeared between the stagnation interface and the 
neck lip during the discharge phase. Maximum pressure amplitudes a t  other positions 
in the plenum chamber were about 29 yo of the amplitude in the resonator chamber. 
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This implies a secondary dependence of the oscillations on the phenomena occurring 
further outside of the generator. 

Compared to the oscillation frequencies reported above, it may be of interest that 
axisymmetric generators with a Helmholtz resonator produce very low-frequency 
oscillations. According to the experiments of Smith & Powell (1964) and W. M. 
Jungowski & G. B. Sobieraj (1980 unpublished results with Hartmann-Sprenger 
generators) the frequencies divided by fH varied from 0.25 to 0.013 and 0.25 to 
0.03 respectively, depending on the jet excess pressure and the spacing of the cavity 
and the nozzle. 

The oscillation observed in the same test facility, but with a quarter-wave 
resonator, appeared very similar to that with a Helmholtz resonator. The normalized 
amplitude at the closed end, however, was about three times higher, reaching the 
value of 0.47. This was expected because the superiority of a quarter-wave resonator 
in the Hartmann-Sprenger generator is generally recognized. 

The one-dimensional theory applied, despite the significant simplifying assump- 
tions, yielded numerical results showing a good qualitative agreement with the 
experiment, except for the reversed frequency trend in the lower j7-range. The upper 
p-boundary of the oscillation resulting from the computation performed fits 
reasonably well to the experimental one. The lower j7-boundary is about 16 % higher 
than in the experiment. The computed pressure amplitudes were typically about 
60 % higher than the measured ones. The normalized frequency varied between 0.78 
and 0.89. 

The theoretical model made use of the following simplifications. The flow pheno- 
mena in the plenum chamber and the high-frequency oscillation in the neck were 
completely omitted as being of secondary importance. The entropy increase owing 
to the inlet and friction loss along the neck, and owing to the dissipation of kinetic 
energy in the resonator chamber was not included directly in the computation. It 
was, however, taken into account globally by introducing the parameter 9, of entropy 
increase. This parameter must be large enough so that the frequency of the oscillation 
computed coincides with the monitored one. The crude estimation of a global entropy 
increase showed that the value introduced into the computation is realistic and 
physically justified. The theory made use of the experimental pressure distribution 
along the centreline of the jet, obtained with a steady flow. That way the cell 
distortion caused by a shear layer was taken into account. 

A more rigorous theoretical treatment of flow in and around the generator, such 
as applying the Reynolds-averaged form of the compressible Navier-Stokes equation, 
would be very complex, time consuming, and require the involvement of a huge 
computer. That task seems to be more difficult than the computation of the 
self-sustained oscillation of a transonic flow past a two-dimensional aerofoil (Levy 
1978 and Seegmiller, Marvin & Levy 1978) or of the oscillating flow in the open 
two-dimensional cavity (Hankey & Shang 1980). Moreover, it is doubtful whether 
such a procedure would lead to a much better understanding of the oscillation 
mechanism. 

Because of a time limitation, the experimental efforts were concentrated on the 
main task, i.e. on the mechanism of the basic oscillation. Therefore, the investigation 
of local flow phenomena such as those at the neck lip or inside the neck was somewhat 
superficial. It seems that the flow separation and reattachment at the nozzle and at  
the neck, and the variation in the flow pattern in the region of the neck lip should 
be studied further in detail. The test facility secured in substance a fairly two- 
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dimensional flow. However, significant distortions of the cellular structure and the 
disappearance of the shock wave at certain instants could be partly a result of 
three-dimensional phenomena. 
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